
Softening Hardware; Enabling the Interactive Development of Modular
Mechatronic Systems

Jake R Read1

MIT Center for Bits and Atoms, Massachusetts, jake.read@cba.mit.edu

LEO F MCELROY

Hack Club, Vermont / MIT Center for Bits and Atoms, Massachusetts, leomcelroy@gmail.com

QUENTIN H BOLSEE

Vrije Universiteit Brussel / MIT Center for Bits and Atoms, Massachusetts, quentinbolsee@hotmail.com

We overload “Softening Hardware” to refer to making hardware development easier, and doing so by making it more like
software development. We suggest doing this by virtualizing hardware devices and lifting systems integration from
embedded environments into high-level interactive ones. In our “Modular-Things” project we developed a set of single
purpose circuits, a networking library for real-time communication in heterogeneous hardware, and a web-based IDE for
integrating complete systems of these devices. “Modular-Things” is not just a collection of dedicated circuits, it’s a set of
tools for developing modular hardware systems which can be composed in software. The future paradigm we envision is
independent developers producing hardware modules which can be easily integrated into complete systems, in a manner
analogous to how open-source software developers create libraries. This will be enabled by embedding integration
information (like an API) within hardware modules themselves and by exposing this information in accessible interactive
development environments.

CCS CONCEPTS • Networks → Programming interfaces; • Computer systems organization → Embedded
systems; • Human centered computing → User interface toolkits.

Additional Keywords and Phrases: modular physical systems, virtualization, composability, prototyping
frameworks

ACM Reference Format:
Jake Read, Leo McElroy, and Quentin Bolsée. 2023. Softening Hardware; Enabling the Interactive Development of Modular
Mechatronic System. In CHI2023 Workshop [WS2] - Beyond Prototyping Boards: Future Paradigms for Electronics Toolkits
CHI ‘23, April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 5 pages.

1This work was presented at the CHI2023Workshop [WS2] - Beyond Prototyping Boards: Future Paradigms for Electronics Toolkits
CHI ʼ23, April 23-28, 2023, Hamburg, Germany
This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


1 INTRODUCTION

When creating cyber-physical systems developers have to learn how to connect physical components and
breakout boards to a central microcontroller (MCU), uncover low-level APIs for these devices, and then write
firmware which runs on the MCU. This process presents various limitations due to compiling and flashing
firmware hampering development speed, a single embedded computer having limited physical resources (i.e.
memory or GPIO pins), and the coupling of functionality across hardware, software, and firmware layers. An
emerging approach to mitigating some of these issues is to embed interpreted languages into microcontrollers
with technologies like MicroPython. This solution however primarily addresses the ergonomics and speed of
development but not limitations associated with embedding all functionality in a single onboard computer, or
challenges of linking low level control to high level user facing application interfaces (for example a 3D printer
interfacing with slicing software using G-code).

We envision a future of electronics prototyping where users can integrate functional systems by
composing networks of many microcontrollers and computers. Such a future demands technology for
independent developers to create modules and make use of modules created by others. We suggest an
approach to developing such technology based on the principles of layering and discoverability. We
developed a set of infrastructure tools for making modular cyber-physical systems and used these tools to
create a machine building toolkit consisting of various single purpose circuits. These infrastructure tools allow
people to develop modular hardware and integrate that hardware together as software. They include an
embedded networking library and a web-based IDE for discovering circuits and integrating them into complete
systems in a high-level programming language (JavaScript).

We have deployed our modular hardware systems in university classroom settings for open-ended
machine building. We will deploy at scale through Hack Club’s global network of teenage technologists by
shipping a kit for constructing personal pen plotting robots to hundreds of teenagers around the world in the
next six months. The machine will serve as a gateway device to digital fabrication and will allow new
programmers with experience generally limited to web-development to utilize familiar technologies
(HTML/CSS/JS) to create integrated control systems and interfaces for cyber-physical devices.

Our team consists of a researcher of accessible modular machine building at MIT’s Center for Bits and
Atoms, an open-source developer who runs educational open-source projects at Hack Club (a global network
of thousands of teenage technologists), and a prominent community member from the Fab Lab network (a
global network of makerspaces). Collectively we have created open-source tools for learning programming
and digital fabrication used by tens of thousands of people around the world. These tools span low-level
hardware design and fabrication to high-level application architecting and interfaces.

2 RELATED WORK

Modularity, packaging and ease-of-sharing are common themes in the open-source software ecosystem [6],
enabling an exponential growth of collaborative and ambitious projects. We have not seen the same
revolution happen with hardware. While accessible physical computing has been enabled by projects like the
Arduino [9] or the Raspberry Pi [12], the integration of additional physical modules still often involves writing
code at the firmware/OS level, with little to no concept of discoverability or object-orientedness between the
controller and the modules. Talkoo [8] introduced plug-and-play modules with a visual IDE to Arduino, though
Talkoo required interfacing with modules through a dedicated hub.

In the last decade, there has been a push toward modular sensors by introducing connector standards
such as Sparkfun’s Qwiic or Adadfruit’s STEMMA QT [1], both relying on the I2C protocol for data
transmission [4]. While this allowed manufacturers to produce a variety of compatible sensors, the main issue
is the absence of discoverability of the added devices. Users must know beforehand which address and
sensor type they are introducing to the system, then include the appropriate code snippet to communicate
with it. Moreover, there is no consensus on the packet format, often requiring an ad hoc library for each
sensor.

More recently, Microsoft research proposed Jacdac [5], a modular hardware system that emphasizes the
plug-and-play aspect at the hardware and software level simultaneously, by offering playful connectors and a



discoverability system. Adapters also let the user integrate Jacdac with other ecosystems (e.g. micro:bit,
Raspberry Pi). While we share similar design goals with Jacdac, their devices are not fully self-documenting.
Jacdac’s system also relies on a custom bus, whereas our work extends across arbitrary link layers. We want
to make it easier for users to create their own modules by not relying on a specific connector or link layer, and
giving the users the tools to write their own firmware for novel devices.

3 OUR APPROACH

In our work, we rely on the decreasing cost and increasing performance of microcontrollers and a scalable
networking framework to develop single-purpose hardware modules that can be intelligently assembled into
application-scale systems in a single programming context. For example in “Modular-Things”, Figure 1,
single-purpose boards can each be connected to a host computer where they are automatically discovered by
a Web IDE. The IDE then queries the boards for their device type, and pairs their firmwares with a matching
JavaScript object whose API is presented to the user-programmer. To build their system, the user simply calls
methods on the object.

This has the effect of collapsing the many-layered systems integration required in most mechatronic
systems into a simple programming task. Unless their application requires some fundamentally new module
or functionality, it is likely that a modular approach like ours would enable the development of many
applications [3]. It also allows for live programming of new electronics systems, since new devices can be
added on-the-fly to existing programs. In the cases where new devices need to be incorporated into the
system, we have also endeavored to make their authorship easy. Using an accessible library, any embedded
project written in Arduino can be quickly added to “Modular-Things”. Additionally high level application
interfaces such as the sequencer pictured in Figure 2 can be easily built alongside low level machine control.

Figure 1. A modular xylophone (above) composed of four modules: two motors and two low-side mosfets (driving solenoid
mallets).



Figure 2: Application code for the xylophone is composed in a Web IDE (middle, left) that additionally serves a sequencer
UI (bottom left). Module APIs are presented on-the-fly to the programmer (bottom picture middle column).

4 FUTURE WORK

Our work to date uses only a small set of link layers to connect modules to high-level systems, namely USB
and UART. However, we have developed a routing layer that is agnostic towards link layers, meaning that
many new links could be quickly integrated using SPI, Bluetooth, LoRA, I2C, CANBus, etc. Building these
layers is important future work for us. It will allow user-programmers to build a breadth of new types of system
- scaling into larger IoT networks using wireless links, and smaller grained, cheaper systems using lighter
weight wired links, as well as systems that mix both. We also aim to shrink the size of our core codes to fit
onto smaller, lower-cost microcontrollers.

We have begun developing a typed serialization layer. This allows us to automatically build descriptors for
typed software objects (like remote procedure calls, or dataflow inputs and outputs), and to packetize their
inputs and outputs in a manner that is consistent across applications.

The tools we have assembled so far are successful because they collapse layered, networked systems
into single-layer assembly tools. We are interested in developing each of our systems’ layers as their own
independent open-source systems-assembly components, roughly following the principles of “end-to-end”
design in our applications [11] and OSI layering in our networks [7].

The serialization layer above will allow us to continue improving what we call “embeddable APIs” - these
are discoverability systems that will allow us to embed descriptions of modular objects’ functions into their
firmwares. These are important because they allow a new kind of collaborative systems assembly; for
example, allowing authors of new hardware modules to embed into their firmware all of the information
required to integrate that firmware into a system. The user of that module will not need to download any
libraries, read any online documentation, or understand any of the module authors’ circuit design or pinout.
Instead, they can simply plug the new module into their system, read an API descriptor from the device’s
memory, and begin to experiment with it using live programming. We believe that this amounts to a lightening
of the intellectual burden for the module’s user, which is a commonly cited factor in the success and rapid
growth of open-source development [2] [6] [10].

Finally, we are interested in exploring both language- and dataflow- based high level programming
interfaces. We have built versions of both, and can imagine contexts for both. As an overarching theme, we
hope that our work across all of these layers will continue to make it easier not just to make modular devices
for existing systems, but to make new modular hardware frameworks themselves.



REFERENCES

[1] Bell, Charles. "Introducing Qwiic and STEMMA QT." Beginning IoT Projects: Breadboard-less Electronic Projects (2021):
217-258.

[2] Benkler, Yochai. "Coase's penguin, or, linux and the nature of the firm." Yale law journal (2002): 369-446.

[3] Blikstein, Paulo. "Gears of our childhood: constructionist toolkits, robotics, and physical computing, past and future."
Proceedings of the 12th international conference on interaction design and children. 2013.

[4] Corcoran, Peter. "Two wires and 30 years: A tribute and introductory tutorial to the I2C two-wire bus." IEEE Consumer
Electronics Magazine 2.3 (2013): 30-36.

[5] Devine, James, et al. "Plug-and-play physical computing with Jacdac." Proceedings of the ACM on Interactive, 5obile,
Wearable and Ubiquitous Technologies 6.3 (2022): 1-30.

[6] Eghbal, Nadia. Working in public: the making and maintenance of open source software. San Francisco: Stripe Press,
2020.

[7] ISO/IEC 7498-1:1994 Information technology — Open Systems Interconnection — Basic Reference Model: The Basic
Model. June 1999. Introduction. Retrieved 26 August 2022.

[8] Katterfeldt, Eva-Sophie, David Cuartielles, Daniel Spikol, and Nils Ehrenberg. “Talkoo: A new paradigm for physical
computing at school.” Proceedings of the The 15th International Conference on Interaction Design and Children (2016):
512-517.

[9] Kushner, David. "The making of arduino." IEEE spectrum 26 (2011): 1-7.

[10] Lerner, Josh, and Jean Tirole. "Some simple economics of open source." The journal of industrial economics 50.2
(2002): 197-234.

[11] Saltzer, Jerome H., David P. Reed, and David D. Clark. "End-to-end arguments in system design." ACM Transactions
on Computer Systems (TOCS) 2.4 (1984): 277-288.

[12] Upton, Eben, and Gareth Halfacree. Raspberry Pi user guide. John Wiley & Sons, 2014.


